Podocalyxin Is a Novel Polysialylated Neural Adhesion Protein with Multiple Roles in Neural Development and Synapse Formation
نویسندگان
چکیده
Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.
منابع مشابه
Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs?
In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM). Interestingly, NCAM can be a target for a special form of posttranslational modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues, only a very ...
متن کاملMorphometrical Study of Polysialylated Neural Cell Adhesion Molecule Positive Cells in Rat Pups Hippocampus Following Induction of Seizure during Pregnancy
Background:The polysialylated neural cell adhesion molecule (PSA-NCAM) is expressed in developing brain. Fetal brain damage is caused by different conditions such as seizure and hypoxia. The present study was designed to investigate the effect of maternal seizures on the number of PSA-NCAM positive cells in pup's hippocampus. Methods: Female Wistar rats were divided into four groups: (a) kindle...
متن کاملEmerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity
Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a...
متن کاملImplementation of a programmable neuron in CNTFET technology for low-power neural networks
Circuit-level implementation of a novel neuron has been discussed in this article. A low-power Activation Function (AF) circuit is introduced in this paper, which is then combined with a highly linear synapse circuit to form the neuron architecture. Designed in Carbon Nanotube Field-Effect Transistor (CNTFET) technology, the proposed structure consumes low power, which makes it suitable for the...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کامل